Mitochondrial dysfunction and defects in lipid homeostasis as therapeutic targets in neurodegeneration with brain iron accumulation.

نویسندگان

  • Kerri J Kinghorn
  • Jorge Iván Castillo-Quan
چکیده

The PLA2G6 gene encodes a group VIA calcium independent phospholipase A2 (iPLA2β), which hydrolyses glycerophospholipids to release fatty acids and lysophospholipids. Mutations in PLA2G6 are associated with a number of neurodegenerative disorders including neurodegeneration with brain iron accumulation (NBIA), infantile neuroaxonal dystrophy (INAD), and dystonia parkinsonism, collectively known as PLA2G6-associated neurodegeneration (PLAN). Recently Kinghorn et al. demonstrated in Drosophila and PLA2G6 mutant fibroblasts that loss of normal PLA2G6 activity is associated with mitochondrial dysfunction and mitochondrial lipid peroxidation. Furthermore, they were able to show the beneficial effects of deuterated polyunsaturated fatty acids (D-PUFAs), which reduce lipid peroxidation. D-PUFAs were able to rescue the locomotor deficits of flies lacking the fly ortholog of PLA2G6 (iPLA2-VIA), as well as the mitochondrial abnormalities in PLA2G6 mutant fibroblasts. This work demonstrated that the iPLA2-VIA knockout fly is a useful organism to dissect the mechanisms of pathogenesis of PLAN, and that further investigation is required to determine the therapeutic potential of D-PUFAs in patients with PLA2G6 mutations. The fruit fly has also been used to study some of the other genetic causes of NBIA, and here we also describe what is known about the mechanisms of pathogenesis of these NBIA variants. Mitochondrial dysfunction, defects in lipid metabolism, as well as defective Coenzyme A (CoA) biosynthesis, have all been implicated in some genetic forms of NBIA, including PANK2, CoASY, C12orf19 and FA2H.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An overview of Neurodegeneration with brain iron accumulation (NBIA) syndromes and the disease status in Iranian population: review article

Neurodegeneration with brain iron accumulation (NBIA) is a rare set of inherited neurodegenerative disorders with abnormal accumulation of iron in basal ganglia. It is a clinically and genetically heterogeneous disorder that is characterized by movement disorders, dystonia, dysarthria, Parkinsonism, intellectual disability, and spasticity. The age at onset varies from childhood to adulthood and...

متن کامل

Loss of PLA2G6 leads to elevated mitochondrial lipid peroxidation and mitochondrial dysfunction

The PLA2G6 gene encodes a group VIA calcium-independent phospholipase A2 beta enzyme that selectively hydrolyses glycerophospholipids to release free fatty acids. Mutations in PLA2G6 have been associated with disorders such as infantile neuroaxonal dystrophy, neurodegeneration with brain iron accumulation type II and Karak syndrome. More recently, PLA2G6 was identified as the causative gene in ...

متن کامل

iPSC-derived neuronal models of PANK2-associated neurodegeneration reveal mitochondrial dysfunction contributing to early disease

Mutations in PANK2 lead to neurodegeneration with brain iron accumulation. PANK2 has a role in the biosynthesis of coenzyme A (CoA) from dietary vitamin B5, but the neuropathological mechanism and reasons for iron accumulation remain unknown. In this study, atypical patient-derived fibroblasts were reprogrammed into induced pluripotent stem cells (iPSCs) and subsequently differentiated into cor...

متن کامل

Mitochondrial iron and energetic dysfunction distinguish fibroblasts and induced neurons from pantothenate kinase-associated neurodegeneration patients

Pantothenate kinase-associated neurodegeneration is an early onset autosomal recessive movement disorder caused by mutation of the pantothenate kinase-2 gene, which encodes a mitochondrial enzyme involved in coenzyme A synthesis. The disorder is characterised by high iron levels in the brain, although the pathological mechanism leading to this accumulation is unknown. To address this question, ...

متن کامل

Glial Lipid Droplets and ROS Induced by Mitochondrial Defects Promote Neurodegeneration

Reactive oxygen species (ROS) and mitochondrial defects in neurons are implicated in neurodegenerative disease. Here, we find that a key consequence of ROS and neuronal mitochondrial dysfunction is the accumulation of lipid droplets (LD) in glia. In Drosophila, ROS triggers c-Jun-N-terminal Kinase (JNK) and Sterol Regulatory Element Binding Protein (SREBP) activity in neurons leading to LD accu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Rare diseases

دوره 4 1  شماره 

صفحات  -

تاریخ انتشار 2016